

LA-UR-17-27350

Approved for public release; distribution is unlimited.

Title: FleCSPH: A New SPH Code Based on FleCSI Framework

Author(s): Lim, Hyun

Loiseau, Julien

Intended for: Exit presentation

Issued: 2017-08-16

Delivering science and technology to protect our nation and promote world stability

FleCSPH: A New SPH Code Based on FleCSI Framework

Hyun Lim¹², Julien Loiseau³⁴

1. Department of Physics and Astronomy, Brigham Young University

2. CCS-2, LANL

3. CReSTIC, University of Reims Champagne-Ardenne

4. CCS-7, LANL

Work with Ben Bergen, Nick Moss, Christoph Junghans, Pascal Grosset, Oleg Korobkin, Wes Even, Brett Okhuysen

EST. 1943

LA-RISTRA project

- Provide flexible computational infrastructures to solve multi-physics problems
- Current main projects involve
 - FleCSI
 - FleCSALE
 - FleCSPH
 - More in future

	Text color indicates the primary for within the project level	ocus of	a role				
Physics Models & Simulations	Physics & Design					_	
Setup & Applications	Physics, Applied Mathematics & Computer Science			Libraries	Application Interface	Jser Interface	DSL Tools &
Methods Development	Applied Mathematics & Computational Science		FleCSI Specia	s & Operators	terface		System
Infrastructure	Computational & Computer Sciences	FleCSI	Specialization	СÒ			Control Utilities
Systems	Computer Science & Architecture						U,

What is the FleCSI??

FleCSI

- FleCSI is a C++ programming system for developing multi-physics simulation codes
- Runtime abstraction layer
 - High-level user interface, mid-level static specialization etc..
- Programming model
 - Control, execution, and data models
- Useful data structure support
 - Mesh, N-Tree, and KD-Tree

FleCSI: Tree Data Structures

Tree topology

- Support n-tree (also hashed n-tree)
- Constant-time neighbor look-up
- Morton ordering
- Refinement and coarsening
- Applications: SPH, N-body, AMR, Complex Flows, Monte Carlo, Molecular Dynamics

FleCSI: Where does it sit in the software stack?

Provides high-level, domainspecific interface that requires syntax and semantics not available in C++

Data & Execution Model **Implementations**

What is the FleCSPH??

FleCSPH

- FleCSPH is an implementation of smoothed particle hydrodynamics (SPH) based on the FleCSI frame work
- Started to develop April 2017
- Julien Loiseau and Hyun Lim are main developers
- Solves Lagrangian conservation equations for mass, energy and momentum of an ideal fluid with Newtonian gravity

Why SPH?

- Exactly conserves mass, linear & angular momentum, and energy
- Perfectly handle vacuum, deformation

Artificial atmosphere required

Why SPH?

- SPH is interesting method to test tree data structure
- Suitable method for combining with FleCSI infrastructure
- Perfect test case for complicated problem for **Exascale computing**
- Has a lot of testable applications:
 - Space filling curve
 - Neighbor searching
 - Different tree traversal and sorting algorithms

FleCSPH: Current Development

- FleCSPH has capabilities:
 - Cubic spline kernel approximation
 - Hydrodynamics with Newtonian gravity
 - I/O with h5part
 - Parallel and distributed memory shared scheme
 - Parallel jobs are executed through MPI and Legion

FleCSPH: Preliminary Results

- Currently, we tested several different problems:
 - 1D Sod shock tube
 - 2D Sedov blast wave
 - 3D Fluid problem: Water cube drop
 - 3D Compact binary objects
 - Double white dwarfs
 - Binary Neutron Stars
 - Working on more astrophysical problems...

Performance Results

Performance Results

Conclusion and Future Works

- FleCSPH is still developing!!
- Need to put different functionalities:
 - Different types of EOS (includes tabulated), more microphysics
 - Nuclear network
 - ID generator that is suitable FleCSPH
 - Different smoothing kernels
 - Add gravitational wave radiation reaction
 - And more...

Conclusion and Future Works

- Add complete framework into FleCSI:
 - · Add different space filling curve: Hilbert, Peano, Gosper
 - More task-based runtime model
 - More optimized and multi-purpose tree code

To use FleCSPH.....

Go to our github page
 https://github.com/laristra/flecsph

 If you have any questions, please contact Hyun Lim and Julien Loiseau

Back Up

Direct Interface

Low-Level

Low-Level

Backend

User Interface **Data Manager Storage Types** Runtime

FieldSpace fs = runtime->create_field_space(ctx);

Backend

User Interface

Data Manager

Storage Types

Runtime

Storage type uses Legion runtime to create appropriate field space(s)

FieldSpace fs = runtime->create field space(ctx);